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ABSTRACT 

This thesis researches the feasibility of a TDA (tactical decision aid) to defend a 

high value surface unit from an enemy submarine. Accordingly, this research 
adopts a FAB (forward and backward) algorithm to search for a moving target. It 

develops a prototype of a TDA: FABTDA which gives an optimal allocation for 

search aircraft. 
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I. INTRODUCTION 

A. BACKGROUND 

When broad localization of a hostile submarine is given, a fleet commander who 

commands a high value surface unit (HVU) faces the problem of whether he should use 

his airborne ASW (Anti Submarine Warfare) units in an offensive or defensive posture 

against the target. If the initial information is accurate enough, concentration of ASW 

assets for killing the target could be effective for both defending the HVU as well as 

prosecuting the target. Therefore, it would be logical if the development of a TDA 

(tactical decision aid) included a defensive search plan which minimizes the probability 

of the HVU being killed by a hostile submarine. 

Washburn (1983) showed that the FAB (Forward And Backward) algorithm could 

be applied to search for a target moving with a Markov process. Although he suggested 

that the FAB algorithm could be applied to a defensive optimal search, there has been no 

application of the FAB algorithm for this purpose. 

B. OBJECTIVE 

This thesis demonstrates that the FAB algorithm is applicable to a kind of tactical 

decision aid which gives an optimal search plan to defend the HVU against a hostile 

submarine moving with a Markov process. A prototype of such a TDA using the FAB 

algorithm is described below. 





n. METHODOLOGY 

A. GENERAL SITUATION 

The problem is to find an optimal search plan for minimizing the expected loss of 

the HVU against a hostile submarine, based on rough information on the submarine's 

location and direction of movement. 

The assumptions are as follows: 

• Time and space are discrete. 

• A hostile submarine starts from an arbitrary point and moves with a Markov 

process. 

• A friendly HVU tries to transit the submarine's patrol area. 

• The HVU transits one unit of length per unit time. 

• The submarine can use a USM (Undersea to Surface Missile) to kill the HVU 

within range. 

• In addition, the submarine can use a USM and a torpedo to kill the HVU when 

within torpedo range (USM range is greater than torpedo range). 

• The commander of the HVU has a limited number of ASW aircraft to search for 

and attack the enemy submarine. 

• Each ASW aircraft is assigned a particular area(cell) and searches for the target 

randomly. If any aircraft detects the target, the target is considered killed. 

• At the beginning, the commander has information on the target's location with a 

given error, and information on the target's motion based on the transition probabilities of 

a Markov process. 



In this situation, the commander must decide how to search for the target. 

Figure 1. shows these assumptions. 

r HVU 
I 

°&7 ^ 

1 
\ / UCJ W 

V <xb /- t 
\ 

Torp. 
Range Z5 / i. 

USM 
Range '*- 

Hostile 
SUB 

Figure 1. An illustration of the problem. 

B. PROBLEM FORMULATION 

Let 
X(t) = (x„y,) 

be a random variable which represents the position of the hostile submarine moving with 

a Markov process. The initial distribution and transition probabilities are known to be 



Pr{X(t = 0) = (x,y)} = p(x,y) 
Fr{X(t +1) = (x' ,y') I X(t) = (x,y)} = T(x,y,x' ,y' ,t) 

Let n(X,t) be the number of ASW aircraft assigned to each cell(X) at time t. These are the 

decision variables. Let U(n,X,t) be the probability that n search assets fail to detect the 

target in cell X at time t when the target is in the cell, and assume that 

U(n(x,y,t),x,y,t) = exp(-c(x,y,t) ■ n(x,y,t)), 

where c(x,y,t) is a search coefficient that reflects the acoustic conditions in the cell, the 

sensor performance, and the sweep rate of search units. To simplify, assume that c(x,y,t) 

is a constant c and omit the unnecessary arguments of U(). 

U(n(X,t)) = exp(-c-n(X,t)) 

From the assumption in the previous section, the hostile submarine can use USMs and 

torpedoes to attack a surface unit. Let D(X,t) be the probability that the submarine at X is 

able to kill the HVU at time t, given that it decides to attack. Since R,< R,„, 

D(X, t) = 1 - (1 - SSKP,) • (1 - SSKPm)   : distance(5«Z?., HVU) < R, 
= SSKPm : R, < distance(S«fc., HVU) < R„ 
= 0 : Rm < distance(Sub., HVU) 

where Rt and Rm are ranges of the torpedo and the USM, SSKP, and SSKPm are the single 

shot kill probabilities of the torpedo and the missile. 

Let Y(t) be the probability that the submarine will try to attack the HVU at time t 

*max 

£r(0 = i. 
r=0 



Given that it survives, the submarine will attack the HVU exactly once. Let L(X,t) be the 

lethality defined as 

Since 

L(x,y,t)=Y(t)D(x,y,t) 

l[U(n(X,t)) 
?=0 

is the probability that the submarine survives to at least time t, the probability that the 

HVU is attacked is 

H(n()) = E 
•mas * 

%UX,t)HU(n(X,t)) 
1=0 ?=0 

The searcher's problem is therefore 

Min [H(n( ))] 
"() 

S/T ^n{x,yJ)<Naircraft for all/ 
x,y 

n(x,y,t) integers >0 

C. FAB ALGORITHM 

Washburn [1] shows that H(n()) can be represented as 

H(n( )) = A(t) + ^P(X, t) ■ U(n(X, t)) ■ F(X, t)  for all t, 

where 

A(t) = E 
t-i 

^L(X,t)-Y[U(n(X,t)) 
f'=0 t"=0 

(1) 

In addition, the forward function P( ) and the backward function F( ) are defined as 



follows: 

(P(x, y, t = 0) = p(x, y) for all x, y 
Pix^t+D^nx^x' ,y ,t)U(n(x' ,y ,t))- P(x' ,y ,o 

fora\\x,y,0<t<ta 

(F{x,y,t = tmJ = L(x,y,tmJ for all x,y 
F(x,y,t) = L(x,y,t) + J^T(x',y' ,x,y,t) ■ U(n(x' ,y',t)) ■ F(x' ,y',t +1) 

forall.x:,;y,0<f</max 

Now, assume that 
n(t) = ri (0 for any t * t0. 

Then, 

H(n( ))- H(n' ()) = £/>(*,y,f0) • {t/(n(x,y,r0)) - U{ri (x,y,t0)j\ ■ F(x,y,t0). 
*.y 

(2) 

(3) 

(4) 

(5) 

(5) is true because from (l)-(4), A(x,y,t), P(x,y,t) and F(x,y,t) don't depend on n(t0) and 

n'(t0). If n( ) exists such that H(n'( ))> H(n( )) for all n'( ) satisfying (4), this n( ) is 

"critical." In addition, an allocation n() is optimal if H(n'( ))>H(n()) for all feasible n'(). 

Criticality is necessary but not sufficient for optimality. 

The main idea of the FAB algorithm is as follows: 

If n() is not critical, (4) and (5) guarantee that an allocation n'() can be found which 

satisfies H(n( ))> H(n'()). After solving the minimizing problem 

MinY P(X,t)U{ri (X,t))F(X,t), 

the FAB algorithm replaces n() with n'(), calculates P() and F() based on n'(), and 

repeats this process until H() can't be reduced. 

7 



In pseudocode, The FAB algorithm is: 

*function update_allocation(P{x, y, t), F(x, y,t)) 

begin 

Min £ P(x, y, t) ■ U(m(x, y, /)) • F(x, y, t) 
*>y 

Srf^miwOZN, aircraft 
x,y 

m(x,y,t) integer >0 

update_allocation <— m() 
return 

*end function 

*procedure FAB(p(x, y), T(x', y, x, y, t), L(x, y, t)) 

begin 
set n() = 0 for all x,y,t 
calculate F(x, y, t) with n() all t 
P(x,y,0) =InitialDistribution(x,y) 
Do 

H0 =H1 

calculate F(x, y, t) with n()       all t 

using(3) 

using(3) 
for t = 0 to t. end 

n( ,0 <— update_allocation(P(x,y,t),F(x,y,t)) 

calculate P(JC, y, f +1) with n(, f) using(2) 
next t 

H, = J>(;c,y,0) • U(n(x,y,0)) ■ F(x,y,0) 
x.y 

Loop until H0 = Hl 

output n(), H0 

end procedure 

Since the FAB algorithm starts by setting n( )=0, the first iteration produces an allocation 

that would be optimal if no searching were performed in the future. Such an allocation is 

called "myopic" and is of some interest in itself. In many cases, the myopic plan is nearly 

8 



optimal. 

D. DYNAMIC PROGRAMMING 

In the FAB algorithm, it is necessary to solve the nonlinear integer minimizing 

problem in the function update_allocation(). For this purpose, this research uses a 

dynamic programming procedure. By translating discrete x-y coordinates to the sequence 

0 to (NxNy-1) like Figure 2., the problem can be restated as a 1-dimensional distribution 

problem. 

0 1 2 3 ... Nx-2 Nx-1 

Nx Nx+1 Nx+2 ... 

2Nx 2Nx+1 ... 

i* 
n 

U1J 
HVU 

Nx(Ny ■1) 
Nx Ny-1 

I 

Figure 2.1-dimensional indices for x-y coordinates. 

fx = i mod(A^r 
j = idi\Nx    , 

<->i = y-Nx+x 



for all t 

(     ( \ 
H(ri) = %PU,t)U(nU,tWU,t) mm 

»Ü.0 

SIT 
NxNy-l 

j,n(j,t)<Naircraft 
7=0 

>n(i,t)integers >0 

In recursive form, this problem is 

(  hJN)=imn[P(0,t)U(n)F(0,t)] 
0<n<AT J 

forj = l-NxNy-l 

hj(N)=   min [hj^W + PUitmrOFUJ)] 
1 0<m+n<Nl   J J 

mm(H) = hNxNy_1(Naircraft) 

N,n,m integers >0 

Figure 3. illustrates how to solve this type of a minimizing problem using dynamic 

programming. (Sugiyama (1976)). 
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forj = l-NxNy-l 

hj^N) 

N 

0 

1 

m 

N 

N. aircraft 

P(j)U(N)F(j) 

0   1 n N N aircraft 

V(w) + fi</,0t/(n)^O',0 

hXN)=   min [ft, l(n) + pU,t)U(,m)FU,t)] 
OSn+m<N' 

Figure 3. Minimizing the recursive form in dynamic programming. (Sugiyama (1976)) 

E. A TWO SIDED GAME VALUE 

A procedure to find the optimal allocation to protect the HVU from a hostile 

submarine has been described. However, this formulation includes a given Y(t) which 

represents the probability that the submarine tries to attack the HVU at time t. To clarify 

the dependence of Hon Y(), use explicit notation H() = H(n( ),Y()) below. In the actual 

situation, the HVU commander can't know the submarine's intention, but the commander 

can assume that the submarine will maximize its chance to kill the HVU. Therefore, this 

situation is described as a two sided game. It follows that: 

11 



• The HVU commander controls n(x,y,t) as decision variables to minimize 

H(n(),Y()). 

• The submarine controls Y(t) as decision variables to maximize H(n( ),Y()). 

The game value v is in the interval 

Max Min[H(n(), Y())] < v < Min Max[H(n(), Y())]. 

If nk() is the allocation returned by FAB, let 

D(X,t)Y[U(nk(X,f)) 
/'=0 

Since 

»(«to,n))=£y(o/(»4o), 
1=0 

Max[H(nk( ),Y())] < Maxf,(nk()). 

Therefore, the value Maxft(nk()) is an upper bound on v. 

To find the a lower bound on v, define G(Y) as 

G(Y) = Min[H(n(),Y())]. 
n 

To simplify the exposition, assume for the moment that G(Y) is the objective function 

returned by the FAB algorithm; that is, assume FAB returns a global minimum. Since 

G(Y) < v for every Y, any submarine strategy Y has an associated lower bound G(Y). To 

find good lower bound, Y must be chosen to make G(Y) large. Maximizing G(Y) is 

difficult, but still a good value for Y (call it Yk) can be found using the following 

"greedy" algorithm where 

12 



'max 

2>) 
»=0 

is increased gradually from 0 to 1 with step AY. In each step, add AY to Y(t) which gives 

largest increment: 

Max Min[H(n( ),F(0),F(l)„,7(f -1),Y(t) + AY,Y{t +1)„, 7(f max))]] 

In pseudocode, the greedy algorithm is: 

*procedure find_sub_strategy 

begin 

Ylotal = 0 

Do while Ylotal<\ 

fort = 0totend 

Yslore «- no 
F(0<-F(0 + Ay 

call procedure FAB(p(x,y), T(x',y\x,y,t), Y(t) ■ D(x,y,t)) 

if H>H0 then 

r0«-f 

end if 

.        Y(t)*-Ystore 

next f 

F(r0)<-y(f0') + AF 

Loop 

output Y(),H 

end procedure 

There is good reason to expect Yk to be nearly optimal. First, G(Y) is a 

concave function because 
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G(aY1 + (l-a)Y2) = Min 
'max 'max 

a-^Y{t)-ft{n{X,t)) + i\7a)YdY{t)fM^t)) 
t=o /=0 

> a • Min %Y(t)-f,(n(X,t)) 
/=0 

+ (1 - a) ■ Min 
•max 

^Y(t)f,(n(X,t)) 
r=0 

= a-G(Y1) + (l-a)G(Y2)      forO<a<l 

Second, if G(Y) were separable as 
*max 

G(y) = £G,(r(o), 
(=0 

the greedy algorithm would find the MaxY G(Y). Although G(Y) is not separable, at least 

H(n( ),Y()) is separable, so there is good reason to expect Yk to be nearly optimal. A 

lower bound is obtained in any case. Some numerical examples will be given in chapter 

J . In practice the lower bound may be in error to the extent that the value returned by 

the FAB algorithm is not a true minimum. 

F. IMPLEMENTATION 

The prototype FABTDA is a Microsoft Windows application written in Visual 

Basic ver. 3.0. FABTDA has the following functions: 

• FABTDA finds the optimal allocation plan of ASW assets for a given Y(t) with 

the FAB algorithm. 

• FABTDA finds a myopic allocation plan of ASW assets for a given Y(t). 

value. 

FABTDA finds a submarine strategy which gives the lower bound on the game 

FABTDA finds an upper bound on the game value. 

• FABTDA finds an optimal offensive search plan, where the word "offensive" 

means that the search minimizes the probability that the submarine survives until the last 

14 



period without regard to the fate of the HVU. The offensive search plan can be calculated 

based on D(x,y,t)=l and Y(t) =1 if t=tmax, Y(t) =0 if K^. FABTDA also shows the 

corresponding probability that the HVU is attacked based on the offensive search plan. 

Figure 4 illustrates the relationship of the procedures, inputs and outputs of FABTDA. 

Input 

SUB data 

Initial distribution 

Transition probability 

Weapon range & SSKP 

Attack probability 

HVU data 

iNUmDer or seaicri UIIILS 

aearcn coemuieni. 

Output i r 1 ' 

Optimal allocation 
& Prb.JHVU sunk} 

PAR +— Find  SUB  Strateav 

Figure 4 Outline of the prototype TDA: FABTDA. 

Figures 5 through 9 show data input and output forms of FABTDA. The data can be 

changed by mouse on these input forms. All data can be stored to or loaded from a file by 

selecting the menu "file." If the user clicks a command button, corresponding values are 

sent from the input form to the variable in the program. Then the caption of the command 

button "data set" is changed into "set done." 
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FAB TDA 
File     DataSet     Optimizing 

Initial Distribution and Transition Probability" 

Initial Distribution Transition 
Probability 

Center 
(6.7) 

Error =  2 

♦ 1     1 ♦i 

Set done 

Initial distribution 

.08 
.08      .08       .08 
.08    BUM -08 
.08       .08       .08 

♦ 

♦ 
♦I                      III* 

Gamma(-1, -1) = .15 

«■ 1* 
.15 1 -1 

.1 
0 

.15 

.2 

.05 
.2 
.05 

total= 1 

Data Set 

Figure 5. FABTDA input form for initial distribution and transition probability. 

FAB TDA 
File    DataSet    Optimizing 

Enemy's Weapons and Attack time" 

Short Range 
Range    1 
Kill Prob.  50Z 

Long Range 
Range     2 
Kill Prob.  203: 

Attack Prob.= .1 
at 8_th period 

♦ | * 
» [    |        » 

♦ I | |              » 
♦ I I             * 

♦ •¥ 

Set done 

lethality at t= 6 
♦ 

.06 
.06      .18 .06 
.18      .18 .18 .06 
.06      .18 .06 

.06 ♦ 
* ♦ 

t= 1          2          3         4         5|6|7         8 
0 0         0          .1         .1         .2      | .3     ! .2        .1 

Figure 6. FABTDA input form for weapon attributes and attack probabilities. 
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FAB TDA 
File    DataSet    Optimizing 

'Data of Defense" 

Number of available 
search assets = 8 

Search Coefficient 
(w-v"rVA)= .2 

Set done 

*        * 

Figure 7. FABTDA input form for number of ASW assets and their search capability. 

FAB TDA 
File    DataSet 

Optimazatii 

Optimizing 
FAB 
Myopic Search 
Find SUB strategy 
Find Upper Bound 
Option  

Defensive 
Offensive 

«■ ♦ 

Figure 8. FABTDA with the defensive option being selected. 
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FAB done 
File    DataSet    Optimizing 

Optimazation 

nfx.y_t=4) FAB 
t= 4  tt of iterations= 5 

t= 4 

♦ * 

0          0          0 0 0 0 0 0 0 
0         0         0 0 0 0 0 0 0 
0         0         0 0 0 0 0 0 0 
0         0         0 
0         0         0 
0         0         0 

0 
0 
0 

0 0 
i i 

2 

0 
0 
1 

0 
0 
2 

0 
0 
0 

[0@ 
0 

0         0         0 0 0 0 1 1 0 
0         0         0 0 0 0 0 0 0 
0         0         0 0 0 0 0 0 0 

Figure 9. FABTDA output form for an optimal allocation by the FAB algorithm. 

The allocation of search units at time t is indicated on the grid. Moving the scroll bar 

changes the value oft. The "@" symbol shows the position of the HVU. 
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m. NUMERICAL EXAMPLES 

A. VERIFICATION 

To verify FABTDA, consider a simple example which can be solved analytically. 

For this purpose, use the following assumptions: 

• Time periods are zero to eight. 

• The submarine is a stationary target, and may be in one of 5 cells: datum center 

and its nearest 4 cells. 

• The submarine's weapon range is infinity, and its SSKP=1. 

• The submarine's attack intention Y(t) =1 if t=8, Y(t) =0 if t*8. 

• The HVU has 5 ASW assets, and each has a 0.2 search coefficient. 

Obviously, the optimal allocation is to assign one ASW unit in each of 5 cells, and the 

minimum objective function value should be 

Min{H) = 5x-xe-(02*9) -0.1653. 
« 5 

The output of FABTDA is as expected. 

B. ACTUAL EXAMPLE 

The next example deals with a more realistic situation. The realistic assumptions 

are as follows: 

• Space is discrete with a 9 by 9 grid, and the cell size is 15nm x 15nm. 

19 



' Time is also discrete running from 0 to 9 in one hour periods. 

The HVU transits at 15kt, moving a single cell in each period. 

The hostile submarine patrols the area with following transition probability, 

Pr{X(t + l) = (x + Ax,y + Ay)\X(t) = (x,y)} = 

A,=-l,   0,   1 
05   .15    .3"\ 
05    .1    .25 

{0    .05   .05) 

A, = -l 
0 
1 

On the boundary, the submarine turns back to the inside. 

• Initially, the HVU has information that the submarine is 45nm ahead and 45nm 

starboard with a 30nm error (see initial distribution below). 

• The submarine has torpedoes with a 15nm range and a 70% SSKP and also has 

USMs with a 45nm range and a 20% SSKP. 

• The probabilities of submarine attack during each period are 0, 0, 0.1, 0.1, 0.2, 

0.2, 0.2,0.1, and 0.1. 

• The HVU has 8 ASW helicopters. Each one can effectively sweep 20% of the 

15nm x 15nm area in one hour. 

Using these settings, FABTDA gives the following output: 

This is an outcome of FAB_TDA. 
by M.KONIGAMI 

General settings 

matrix size 
(0 to 8) * (0 to 8) 

time 
0 to 8 

Initial enemy data. 
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initial dis tribution 
x= 0 x= 1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

y= 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

y= i .0 .0 .0 .0 .0 .0 .0 .0 .0 

y= 2 .0 .0 .0 .0 .0 .0 .0 .0 .0 

y= 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 

y= 4 .0 .0 .0 .0 .0 .0 .0 .0 .0 

y= 5 .0 .0 .0 .083 .0 .0 .0 .0 .0 

y= 6 .0 .0 .083 .083 .083 .0 .0 .0 .0 

y= 7 .0 .083 .083 .083 .083 .083 .0 .0 .0 

y= 8 .0 .0 .083 .083 .083 .0 .0 .0 .0 

transition probability to neighbors 

y=-l 
y= 0 

y= i 

x=-l x= 0 x= 1 
.05 .15 .3 
.05 .1 .25 
.0 .05 .05 

weapon attributions 
short range weapon: 

range = 1, SSKP= .7 
long range weapon : 

range = 3,  SSKP= .2 

prob, that SUB trys to attack 
t= 0 t= 1 t= 2 t= 3 t= 4 

p=   .0   .0  . .1   .1   .2 

t= 5  t= 6 t= 7  t= 8 
.2    .2    .1   .1 

Search units data. 
Number of available search units : 8 
sweep rate of each unit : .2 

Outcome: allocation plan of search units by FAB Defensive 
@s indicate position of HVU 

Objective function value :H= .10375 

t= 0 
x= 0 x= 1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

y= 0 0 0 0 0 0 0 0 0 0 

Y= 1 0 0 0 0 0 0 0 0 0 

Y= 2 0 0 0 0 0 0 0 0 0 

Y= 3 0 0 0 0 0 0 0 0 0 

Y= 4 0 @ 0 0 0 0 0 0 0 0 

Y= 5 0 0 0 2 0 0 0 0 0 

Y= 6 0 0 2 2 1 0 0 0 0 

Y= 7 0 1 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 1 
x= 0 x= 1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

Y= 0 0 0 0 0 0 0 0 0 0 

Y= 1 0 0 0 0 0 0 0 0 0 

Y= 2 0 0 0 0 0 0 0 0 0 

Y= 3 0 0 0 0 0 0 0 0 0 

y= 4 0 0 § 0 0 0 0 0 0 0 
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Y= 5 0 0 0 0 0 0 0 0 0 

y= 6 0 0 1 2 1 0 0 0 0 

y= 7 0 0 0 2 2 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 2 
x=  0 x=   1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x=  8 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

y= 3 0 0 0 0 0 0 0 0 0 

y= 4 0 0 0 e 0 0 0 0 0 0 

y= 5 0 0 0 1 2 0 0 0 0 

y= 6 0 0 0 2 2 1 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 3 
x= 0 x=  1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

Y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

y= 3 0 0 0 0 0 0 0 0 0 

y= 4 0 0 0 0 @ 1 0 0 0 0 

y= 5 0 0 0 1 2 1 0 0 0 

y= 6 0 0 0 0 2 1 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 4 
x= 0 x=   1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x=  8 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

y= 3 0 0 0 0 0 0 0 0 0 

y= 4 0 0 0 0 1 @ 2 0 0 0 

y= 5 0 0 0 0 3 1 1 0 0 

y= 6 0 0 0 0 0 0 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 5 
x= 0 x=  1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x=  8                                                                       - 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

y= 3 0 0 0 0 0 0 0 0 0 

y= 4 0 0 0 0 0 1 e 2 1 0 

y= 5 0 0 0 0 0 3 0 1 0 

y= 6 0 0 0 0 0 0 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 6 
x= 0 x=   1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x=  8 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 
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y= 2 0 0 0 0 0 0 0 0 0 

y= 3 0 0 0 0 0 0 0 0 0 

y=  4 0 0 0 0 0 0 0 @ 4 0 

y= 5 0 0 0 0 0 0 2 2 0 

y= 6 0 0 0 0 0 0 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 7 
x= 0 x= 1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

Y= 3 0 0 0 0 0 0 0 2 0 

y= 4 0 0 0 0 0 0 0 3 @ 0 

y= 5 0 0 0 0 0 0 0 3 0 

y= 6 0 0 0 0 0 0 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

t= 8 
x= 0 x= 1 x= 2 x= 3 x= 4 x= 5 x= 6 x= 7 x= 8 

y= 0 0 0 0 0 0 0 0 0 0 

y= 1 0 0 0 0 0 0 0 0 0 

y= 2 0 0 0 0 0 0 0 0 0 

Y= 3 0 0 0 0 0 0 0 0 1 

y= 4 0 0 0 0 0 0 0 4 1 @ 

y= 5 0 0 0 0 0 0 0 0 2 

y= 6 0 0 0 0 0 0 0 0 0 

y= 7 0 0 0 0 0 0 0 0 0 

y= 8 0 0 0 0 0 0 0 0 0 

In this example, the minimized defensive probability that the HVU is attacked is 

0.1038. The same probability is 0.1145 if the HVU uses the offensive allocation; the 

increase shows the importance of choosing the right objective. 

For the myopic defensive search, the probability is 0.1052, and for the myopic 

offensive search, the probability is 0.1159. 

Min H defensive offensive 

FAB 0.1038 0.1145 

Myopic 0.1052 0.1159 

The FAB algorithm finds a more effective search allocation than that from the myopic 

search. 
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In addition, FABTDA can provide a submarine strategy by the procedure 

find_sub_strategy. The procedure findjsubjstrategy with AY=0.1 gives the following 

probability that the submarine will attack the HVU at t: 

prob, that SUB tries to attack 

t= 0  t= 1 t= 2 t= 3  t= 4  t= 5 t= 6  t= 7 t= 8 

p= .0   .0   .0   .0   .1   .3  .3   .3   .0 

Using this strategy, FAB fixes the HVU strategy to minimize the defensive objective 

function value. In this case, the objective function value is H = 0.1133, an improvement 

from the submarine's viewpoint. This value will be a lower bound on the game value as 

long as FAB obtains a nearly optimal solution. 

Additionally, FABTDA provides an upper bound for the game value. In accordance 

with the submarine strategy, the upper bound of the game value is 

f7(n())=0.1145. 

Similar calculation can be performed for the offensive objective function. 

In summary, the bounds are: 

Bounds of game value    FAB defensive FAB offensive 

Lower bound        0.1133        0.1238 

Upper bound        0.1145        0.1272. 

The upper bound of the defensive search is smaller than the lower bound of the offensive 

search. FABTDA provides good bounds that can discriminate between defensive search 

and offensive search. In this case, the defensive search is worth considering to defend the 

HVU. The best defense is not always a good offense. 
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IV. CONCLUSIONS 

FABTDA demonstrates that it is feasible to develop a TDA to find the optimal 

search plan defending the HVU for a moving target by using the FAB algorithm. In 

addition, the previous chapter shows that: 

• The FAB algorithm can find more effective search plans than the myopic search. 

• FABTDA can provide bounds on the game value, which show when the defensive 

search is more effective than the offensive search. 

Currently, FABTDA uses a search coefficient that is a constant. In the future, if 

FABTDA can use space and time dependent search coefficients, more interesting allocation 

plans which reflect actual situations like acoustic conditions could be generated. 

25 



26 



LIST OF REFERENCES 

Sugiyama, S. "Dynamic Programming," Nikkagiren, Tokyo, 1976. 

Washburn, A. R., "Search for Moving target: The FAB Algorithm," Operations Research, 

Vol. 31, No. 4, pp. 739-751,1983. 

Washburn, A. R., "Search and Detection 2nd ed.," ORSA, 1989. 

27 



28 



INITIAL DISTRIBUTION LIST 

No. Copies 

Defense Technical Information Center    2 
8725 John J. Kingman Rd., STE 0944 
Fort Belvoir, VA 22060-6218 

2. Dudley Knox Library      
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. Prof. A.R. Washburn, Code OR/Ws 
Naval Postgraduate School 
Monterey, CA 93943-5002 

29 


